Презентация - Конус

1,580
просмотров

Текст этой презентации

Слайд 1

ГЕОМЕТРИЯ

Слайд 2

Нас окружает множество предметов

Слайд 3

КОНУС

Слайд 4

Задача
Какова площадь поверхности воронки, образовавшейся при взрыве 122-мм бомбы?

Слайд 5

Задача
Сколько квадратных метров брезента потребуется для сооружения палатки конической формы?

Слайд 6

КОНУС
Пусть дана некоторая плоскость α.

Слайд 7

КОНУС
Проведём в плоскости α замкнутую кривую линию L.
L

Слайд 8

КОНУС
Соединим точку А, не лежащую в плоскости α, с замкнутой кривой линией L.
L
А

Слайд 9

КОНУС
Отрезки, соединяющие точку А с замкнутой кривой линией L, образуют коническую поверхность.
L
А

Слайд 10

КОНУС
Тело, ограниченное конической поверхностью и плоскостью, пересекающей её по замкнутой кривой, называется конусом.
L
А

Слайд 11

Назовите предметы, которые имеют коническую поверхность

Слайд 12

КОНУС
α
Рассмотрим окружность О(r) Є α .

Слайд 13

КОНУС
α
Проведем прямую ОР  α .
О
r
Р

Слайд 14

КОНУС
α
Соединим каждую точку окружности О (r) с точкой Р.
О
r
Р

Слайд 15

КОНУС
Поверхность, образованная отрезками, соединяющими каждую точку окружности с точкой, лежащей на прямой перпендикулярной плоскости этой окружности и проходящей через центр этой окружности – это поверхность прямого кругового конуса.
α
О
r
Р

Слайд 16

КОНУС
КРУГОВОЙ КОНУС – ТЕЛО, ОГРАНИЧЕННОЕ КОНИЧЕСКОЙ ПОВЕРХНОСТЬЮ И КРУГОМ.
α
О
r
Р

Слайд 17

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Коническая поверхность – боковая поверхность конуса

Слайд 18

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Круг – основание конуса

Слайд 19

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Точка Р – вершина конуса

Слайд 20

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Образующие конической поверхности – образующие конуса

Слайд 21

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Прямая, проходящая через центр основания и вершину – ось конуса

Слайд 22

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Перпендикуляр, опущенный из вершины на плоскость основания – высота конуса
Н
У прямого конуса ось и высота совпадают. У наклонного конуса ось и высота не совпадают

Слайд 23

КОНУС
ЭЛЕМЕНТЫ КОНУСА
Радиус основания конуса – радиус конуса
r

Слайд 24

КОНУС
ЭЛЕМЕНТЫ КОНУСА:
Боковая поверхность (коническая поверхность) Образующие Основание (круг) Вершина Ось Высота Радиус

Слайд 25

КОНУС
ЭЛЕМЕНТЫ КОНУСА:

Боковая поверхность
Вершина
Ось
Высота
Радиус
Образующая

Слайд 26

КОНУС
КОНУС – ТЕЛО ВРАЩЕНИЯ
Конус может быть получен вращением прямоугольного треугольника вокруг одного из катетов, причем этот катет будет является высотой конуса, второй катет – радиусом конуса, а гипотенуза образующей конуса.
Н
r

Слайд 27

КОНУС
СЕЧЕНИЯ КОНУСА
Сечения, проходящее через ось(осевые)
Сечения, перпендикулярные оси (поперечные)
Сечение, проходящее через вершину, не содержащее ось конуса
Равнобедренный треугольник: боковые стороны – образующие, основание – диаметр конуса Если равносторонний треугольник – конус называется равносторонним
Круг радиуса меньшего, радиуса основания
Равнобедренный треугольник: боковые стороны – образующие, основание – хорда окружности основания

Слайд 28

Конические сечения конуса – линии пересечения секущих плоскостей с боковой поверхностью конуса
Конические сечения широко используются в технике ( эллиптические зубчатые колёса, параболические прожекторы и антенны ); планеты и некоторые кометы движутся по эллиптическим орбитам; некоторые кометы движутся по параболическим и гиперболическим орбитам.

Слайд 29

КОНУС
Касательная плоскость – плоскость, проходящая через образующюю и перпендикулярная плоскости осевого сечения

Слайд 30

Если плоскостью, параллельной основанию конуса, отсечь от него верхнюю часть, то оставшаяся часть (между секущей плоскостью и основанием), называется усечённый конус
Усечённый конус

Слайд 31

ВИДЫ КОНУСОВ
НАКЛОННЫЙ КОНУС
ПРЯМОЙ КОНУС
УСЕЧЁННЫЙ КОНУС

Слайд 32

КОНУС

Слайд 33

Так выглядит развертка конуса
Развёрткой конуса является круговой сектор, у которого радиус равен образующей конуса R=ℓ, а длина дуги равна длине окружности основания конуса L=C=2πR

α
С = 2πR
Формулы для вычисления боковой поверхности и полной поверхности конуса: Sбок.= πRℓ Sосн.= πR² Sп.п.к. =Sбок.+Sосн.= πR(R+ℓ)

Слайд 34

Задача №1
Какова площадь поверхности воронки, образовавшейся при взрыве 122-мм бомбы?

Слайд 35

Для решения задачи надо измерить:
Длину окружности основания воронки: С= 12м и глубину по склону: ℓ=1,5 м Найти: Sбок.=? Решение: Sбок.= πRℓ С= 2πR R=С:2π Sбок.= πRℓ= πСℓ:2π=Сℓ:2 Sбок.=12*1,5:2= 9м² Ответ: 9 м²

С

Слайд 36

Задача №2
Сколько квадратных метров брезента потребуется для сооружения палатки конической формы высотой 4 метра и диаметром основания 6 метров ?
4
6

Слайд 37

Задача

Решение: Sбок.= πRℓ R=D:2 = 6:2 = 3(м) ℓ= √ Н² +R² = √4² + 3² = 5 Sбок.≈ 3,14* 3*5 ≈ 45,7(м²) Ответ: ≈ 46 м²
4
3
3
Дано: Н=4 м D=6 м Найти: Sбок.=?
6

Слайд 38

Задача №3 (резерв)
F
О
Фонарь установлен на высоте 8 м. Угол рассеивания фонаря 120°. Определите, какую поверхность освещает фонарь.
120°

Слайд 39

Задача №3
F
О
Поверхность, освещаемая фонарём, это площадь круга с радиусом R=ОА. S= πR²
120°

А

Слайд 40

Задача №3 (решение)
Решение: _ FАО= 180°-120°/2=30° FA=8•2=16 (катет, лежащий против угла в 30°) АО= √ FA²-FO² = √16²-8² = 8√3 (по теореме Пифагора) S = π (8√3)² =132π ≈ 414,5 м² Ответ: 414,5 м²

Слайд 41

Какое из изображённых тел является конусом?

Слайд 42

Ответьте на вопрос и запишите ответы в столбик. Из первых букв составьте слово.
Как называется: 1. Фигура, полученная при поперечном сечении конуса? 2. Отрезок, соединяющий вершину с окружностью основания? 3. Имеет ли конус центр симметрии? 4. Тело, полученное при пересечении конуса плоскостью, параллельной основанию? 5. Фигура, являющаяся боковой поверхностью конуса?

Слайд 43

Проверь себя
Задание1: 1; 5; 10. Задание2: 1. Круг. 2. Образующая. 3. Нет. 4. Усечённый конус. 5. Сектор.

Слайд 44

КОНУС
Вопрос к размышлению
? Почему пожарные вёдра имеют форму конуса?

Слайд 45

КОНУС


Похожие презентации

Задачи на объём конуса Конус Конус. Построение сечений конуса Свойства равнобедренного треугольника Решение практических задач на вычисление объёма прямоугольного параллелепипеда